Wednesday, 5 March 2014

Limits from the Left

 


A function   f(x)   is said to tend to the limit   l'   as      tends to    alfa    from the left

if given element is > 0

there exists a number   delta>0 

such that;    /f(x)-l'/<of an element

whenever ;   a-delta<x<a  .

This number   l'  is called the left  hand limit of 

 f(x)  at   x=a   and it is denoted by ;

lim x-->a  f(x)=l'  or  lim x-->a-0 f(x)=l'

or ;  lim h-->0  f(a-h)=l'

This limit is also written as   f(a-0)

In simple words ,  f(x)  is said to tend to the limit   l'  from the left if    f(x)  tends to   l'  as   approaches   a   through values of   x   smaller then   a .

Working Rule for finding the limit from the left at

x=a 

A)  Put   a-h  for   x  in  f(x)   to get   f(a-h)

B)  Make   h-->0  in  f(a-h) .



No comments:

Post a Comment

Our Latest Post

How to find log (alpha+ i beta), Where alpha and beta are real

Here is the video to show the details of solving this problem. It is an important problem for basic understanding about the logarithm of re...

Popular Post