Wednesday, 5 March 2014

Limit of f(x) at x=a


A function   f(x)  is said to tend to the limit   l   at   x=a  

if given   element>0  there exists a number  delta>0

such that ;  /f(x)-l/< that element 

whenever ; /x-a/<delta 

In simple words ,   f(x)  is said to tends to the

limit l  at  x=a 

if   f(x)  tends to  as  x  approaches  a  

through values of  x    greater then  

as well as   values of  smaller than  a.

The limit l  of  f(x)  at  x=a  denoted by

lim x-->a  f(x)=l

It is clear from above that

f(x)  tends to the limit  at  x=a  implies .

lim x-->a+0  f(x) = lim x-->a-0  f(x) 

=lim x-->a  f(x) = l

provided both the right-hand and left-hand limits exists for

x=a  .

If the domain of definition of   f(x)  is

[a, b] , then existence of

lim x-->a+0  f(x)   does not arise .

Similarly the question of existence

 lim x-->b+0  f(x)   also does not arise .

No comments:

Post a Comment

Our Latest Post

How to Evaluate an Integral

In this video you will see how to evaluate an Integral. This video shows an example, by this example you will see about how to evaluate an ...

Popular Post