Monday, 3 March 2014

Limit of a Function


A function   f(x)  is said to tend to the limit   l   as   x  tends to   a   from the right

if given element is >0  there exists a number

delta>0  , such that ;

/f(x)-l/< of that element 

whenever , a<x<a+delta .

This number   l  is called the right hand limit of  f(x)  at

x=a and it is denoted by

lim x-->a  f(x)=l  or   lim x-->a=0  f(x)=l

or ,  lim h-->0  f(a+h)=l

This limit is also written as   f(a+0)

In simple words ,   f(x)  is said tend to the limit   l  from the right if  f(x)  tends to   l   as   approaches   through value of   x   greater then  a .

working rule for finding the limit from the right at  x=a.

a)  --  Put   a+h  for  in  f(x)  to get   f(a+h)

b)  --    h-->0  in   f(a+h).

No comments:

Post a Comment

Our Latest Post

Introduction of Circle

All of my lessons and teaching videos are in English and most of them are for students of Logistics Management. But many of mys students an...

Popular Post