Monday, 3 March 2014

Limit of a Function


A function   f(x)  is said to tend to the limit   l   as   x  tends to   a   from the right

if given element is >0  there exists a number

delta>0  , such that ;

/f(x)-l/< of that element 

whenever , a<x<a+delta .

This number   l  is called the right hand limit of  f(x)  at

x=a and it is denoted by

lim x-->a  f(x)=l  or   lim x-->a=0  f(x)=l

or ,  lim h-->0  f(a+h)=l

This limit is also written as   f(a+0)

In simple words ,   f(x)  is said tend to the limit   l  from the right if  f(x)  tends to   l   as   approaches   through value of   x   greater then  a .

working rule for finding the limit from the right at  x=a.

a)  --  Put   a+h  for  in  f(x)  to get   f(a+h)

b)  --    h-->0  in   f(a+h).

No comments:

Post a Comment

Our Latest Post

How to find log (alpha+ i beta), Where alpha and beta are real

Here is the video to show the details of solving this problem. It is an important problem for basic understanding about the logarithm of re...

Popular Post