Monday, 24 February 2014

Partial Derivatives

 


Consider   z=f(x,y) 

If we differentiate  w.r.t.  x   considering   y   as constant , we get the partial derivatives as

df/dx 

= dz/dx  or  fx  

Similarly keeping  constant we can differentiate  w.r.t.  y  we get ;

df/dy 

=dz/dy   or  f 

If we differentiate   df/dx   again w.r.t.   x  keeping    y   as constant  

we get the second order partial derivatives 

(d/dx)(df/dx)

If we differentiate   df/dx  w.r.t.   y ,  keeping    x  as constant ,

we get another second order partial derivatives

(d/dy)(df/dx)

Similarly two more derivatives

(d/dx)(df/dy)

and (d/dy)(df/dy) .



No comments:

Post a Comment

Our Latest Post

How to Evaluate an Integral

In this video you will see how to evaluate an Integral. This video shows an example, by this example you will see about how to evaluate an ...

Popular Post