Friday, 7 February 2014

De Moivre's Theorem


We know that the trigonometrical form of a complex number    is given by  

          z = r(cos theta + i sin theta)

 where ,    r =  /z/ , theta = arg z 

The product of two complex number is a complex number , As such 

 n  th  power of (a+ib)  is also a complex number .

But the methods of ordinary Algebra do not provide us with any precious method for computing

 n  th  power of (a+ib)   where  may be an integer or fraction .

De Moivre's Theorem  helps us to compute the value of

 n  th  power of (a+ib)  by changing it in a trigonometrical form .

The general enunciation of  De Moivre's Theorem :-  

For all values of    and   theta   , real or complex ;

cos n theta + i sin n theta      is a value of

n th power of    cos theta + i sin theta 

The theorem holds for real and non real complex values of    theta    and     n 

The expression     cos theta + i sin theta   is some times abbreviated to

cos theta

So , De Moivre's Theorem  is ;

n th power of    cos theta + i sin theta  

= cos n theta + i sin n theta 

No comments:

Post a Comment

Our Latest Post

How to Evaluate an Integral

In this video you will see how to evaluate an Integral. This video shows an example, by this example you will see about how to evaluate an ...

Popular Post