Wednesday, 26 February 2014

Criteria of Maximum and Minimum

 


We have these two criteria for judging whether a function has a maximum or minimum at a particular point .

For a maximum at   x=c  :- 

---  Criterion A :-  (1) dy/dx=0 and
               
       (2) dy/dx  is possitive at  c-h  ;

           dy/dx  is negative at   c+h

---  Criterion B :-  (1) dy/dx=0  and

        (2)  (d/dx)(dy/dx)  is negative 

For  a minimum at   x=d  :-

---  Criterion A :-  (1)  dy/dx=0  and

      (2)  dy/dx  is negative at  d-h  ;

           dy/dx  is positive at  d+h  

---  Criterion B :-  (1)  dy/dx=0  and

     (2)  (d/dx)(dy/dx)  is positive . 



No comments:

Post a Comment

Our Latest Post

How to find log (alpha+ i beta), Where alpha and beta are real

Here is the video to show the details of solving this problem. It is an important problem for basic understanding about the logarithm of re...

Popular Post