Thursday, 20 February 2014

Arcs and Chords

 


Let us take the arc of a curve and a fixed point   on it . Now take a variable point   Q   on the curve and let    Q--->P.     Then it is definitely ;

lim Q-->P(arcPQ/chordPQ)=1


Length of arc as a function :- 

Let    y=f(x)   be the equation of a curve on which we take a fixed point    A   .

To any given value of   x   corresponds a value of

  y, viz.,f(x) ;

To that pair of numbers   x    and   f(x)   corresponds a point     on the curve, and this point   has some arcual length   s    from   A.  

 Thus   "s"   is a function of   x   for the curve

y=f(x)

Similarrly , we can see that   "s"   is a function of parameter   "t"   for the curve

x=f(t),   y=F(t)
         ------------Parametric Equation

and in function of   theta   for the curve

r=f(theta)
        ------------Polar Equation



No comments:

Post a Comment

Our Latest Post

Introduction of Circle

All of my lessons and teaching videos are in English and most of them are for students of Logistics Management. But many of mys students an...

Popular Post