Saturday, 25 January 2014

Polar Equation of Curves


Any explicit or implicit relation between    r    and    theta      will give a curve determined by the points whose co-ordinates satisfies that relation .

Thus the equations ;

r=f(theta)   or   F(r , theta)=0

determine curves .

The co-ordinates of two points symmetrically situated about the initial line are of the form   (r,Theta)    and    (r,-theta)   so that their vertical angles differ in sign only .

Hence a curve will be symmetrical about the initial line if on changing    theta    to     -theta    its equation does not change . For instance the curve


is symmetrical about the initial line , for


It may be noted that

r=a    represents a circle with its center at pole and radius   a ;  and

theta=b    represents a line through the pole obtained by revolving the initial line through the angle   b   .

A few important curves will not be traced . To trace polar curves , we generally consider the variations in     r    as    theta    varies .

No comments:

Post a Comment

Our Latest Post

How to find log (alpha+ i beta), Where alpha and beta are real

Here is the video to show the details of solving this problem. It is an important problem for basic understanding about the logarithm of re...

Popular Post