Tuesday, 21 January 2014

Existence of Tangent

 


Let   y=f(x)    be any function and

dy/dx   exists at     x=a    

Then at the corresponding point    [a , f(a)]    of the function tangent to the curve exists and if the tangent

makes an angle    theta     with the positive direction of    x-axis    we have

tan(theta)=dy/dx    at     x=a .

tan(theta) = gradient of the tangent to the curve

      y=f(x)     at    x=a 

therefore ; if    f(x)   is differentiable at    x=a    then tangent to the curve at

x=a    must exist and it must be unique .

In any graph of    /x/   tangent is not unique at    x=0   .

i.e. ; tangent at point    x=0   when     x-->0    from left is not same as the tangent

x=0    when   x-->0   from right .

when   x-->0   from left , gradient of the tangent is

tan135degree=-1    and when   x-->0  from right , gradient of the tangent is

tan45degree=1.

Hence tangent is not unique at    x=0    and consequently    /x/  is not differentiable at     x=0    .



No comments:

Post a Comment

Our Latest Post

How to find log (alpha+ i beta), Where alpha and beta are real

Here is the video to show the details of solving this problem. It is an important problem for basic understanding about the logarithm of re...

Popular Post