Tuesday, 14 January 2014

Differentiation as rate measurer

dy/dx   as rate measurer  ;

dy/dx=(dy/dt)/(dx/dt)   , if any two of

dy/dx  ,  dy/dt  and  dx/dt   are

given the value of the third can be determined

    For working out problems there will be two variables    and   y   .   From given condition  a relation between    x    and    y    can be found and differentiating this expression we can find

                   dy/dx   ,

Either     dy/dt    or    dx/dt    is given

Thus if   dy/dt   is given we can find    dx/dt     and vice versa  .

If there is only one variable and its rate of change is given , then we can find the value of the variable in term of time    t    by integrating this expression .

We already know that ;

dy/dx=(dy/dt)/(dx/dt)=rate of change of (y)/rate of change of (x)

thus differential coefficient of   y    with respect to    x     is equal to the ratio of the rate of change of    y     and rate of change of      x      . 

No comments:

Post a Comment

Our Latest Post

Introduction of Circle

All of my lessons and teaching videos are in English and most of them are for students of Logistics Management. But many of mys students an...

Popular Post