Thursday, 2 January 2014

Differentiability Theorem




Theorem :-  A function   f    is differentiable  at     x=a     if and only if there exists a number   l    .
                   such that ;

                    f(a+h)-f(a)=lh+hn

                   Where     n    denotes a quantity which tends to    0     as   h-->0     .

Proof :-     Let    f     be differentiable at    x=a    . Then there exists a number   l    
                Such that ;

                lim x-->a  [f(x)-f(a)]/[x-a]=l

               putting ;     x=a+h ,

               lim h-->0  [f(a-h)-f(a)]/h=l

           or;    lim h-->0 [{f(a+h)-f(a)/h}-l]=0

              therefore   [{f(a+h)-f(a)}/h]-l     is equal to    n  

            where    n-->0    as     h-->0    

          Therefore f(a+h)-f(a)=lh+hn 

          where    n-->0    as    h-->0     .

          Thus it is the necessary condition .

As the argument is reversible , the condition is also sufficient .


No comments:

Post a Comment

Our Latest Post

Introduction of Circle

All of my lessons and teaching videos are in English and most of them are for students of Logistics Management. But many of mys students an...

Popular Post