Thursday, 2 January 2014

Differentiability Theorem

Theorem :-  A function   f    is differentiable  at     x=a     if and only if there exists a number   l    .
                   such that ;


                   Where     n    denotes a quantity which tends to    0     as   h-->0     .

Proof :-     Let    f     be differentiable at    x=a    . Then there exists a number   l    
                Such that ;

                lim x-->a  [f(x)-f(a)]/[x-a]=l

               putting ;     x=a+h ,

               lim h-->0  [f(a-h)-f(a)]/h=l

           or;    lim h-->0 [{f(a+h)-f(a)/h}-l]=0

              therefore   [{f(a+h)-f(a)}/h]-l     is equal to    n  

            where    n-->0    as     h-->0    

          Therefore f(a+h)-f(a)=lh+hn 

          where    n-->0    as    h-->0     .

          Thus it is the necessary condition .

As the argument is reversible , the condition is also sufficient .

No comments:

Post a Comment

Our Latest Post

How to find log (alpha+ i beta), Where alpha and beta are real

Here is the video to show the details of solving this problem. It is an important problem for basic understanding about the logarithm of re...

Popular Post