Monday, 23 December 2013

Equations of Tangent and Normal


Explicit Cartesian Equations :-

If      be the angle which the tangent at any point   (x, y)   on the curve     y = f (x)     makes with    x   axis then ;
                tan A = dy/dx = f' (x) 

Therefore , the equation of the tangent at any point     (x , y)     on the curve    y = f (x)      is

              Y - y = f' (x) (X - x)  -------------(1)

where   X , Y   are the current co-ordinates of any point on the tangent .

The normal to the curve    y = f (x)    at any point    (x , y)     is the straight line which  passes through that point ans is perpendicular to the tangent to the curve at the point so that its slope is ;

             -1/f (x)

Hence the equation of the normal at   (x , y)    to the curve    y= f (x)    is ;

            (X - x) + f' (x) (Y - y) = 0 

Implicit Cartesian Equations :-

If any point    (x , y) , then the curve   f (x, y) = 0

          Where   Dy/Dx    is not equivalent to  0   .

           dy/dx =  - (Df/Dx) / (Df/Dy)

Hence the equations of the tangent and the normal at any point
(x , y)   on the curve    f (x , y) = 0  are ;

         (X - x)(Df / Dx) + (Y - y) (Df / Dy) = 0      and 

        (X - x) (Df / Dy) - (Y - y)(Df / Dx) = 0

Parametric Cartesian Equations  :- 

At the pont  of the curve    x = f (t) , y = F(t)  ;
       where we have  f'(t)   is not equivalent to   0    ;
we have ;

    dy/dx = (dy/dt) (dt/dx) = F' (t)/f' (t)  

Hence the equations of the tangents and the normal at any point    t    of the curve    x=f(t) , y=F(t)   are ;


respectively .

No comments:

Post a Comment

Our Latest Post

How to find log (alpha+ i beta), Where alpha and beta are real

Here is the video to show the details of solving this problem. It is an important problem for basic understanding about the logarithm of re...

Popular Post