Thursday, 19 December 2013

Differential Equations

 

In this post we will discuss about "Formation of Ordinary Differential Equations"

Let ;     f ( x , y , c1 ) = 0  ---------------------(1)

be an equation containing   x ,  y  an  on arbitrary constant   c1   .

Differentiating  (1)  we get ;

                              ( Df/Dx ) + ( Df/Dx ) (dy/dx ) = 0 ------(2) 

equation  (2)  will in general contains   c1   . If   c1  be eliminated between  (1)  and  (2)  , we shall get a relation involving   x,  y  and   dy/dx  which will evidently be a differential equation  of the first order .

Similarly , if we have an equation

                             f ( x , y , c1 , c2 ) = 0 ----------------(3)

containing two arbitrary constant  c1  and  c2  , then by differentiating this twice , we shall get two equations . Now between these two equations and given equations , in all three equations , if the two arbitrary constant   c1  and   c2  be eliminated , we shall evidently get a differential equation  of the second order .

in general , if we have an equation ;

                         f ( x , y , c1 , c2 ,  .......cn ) = 0 ----------(4)

containing  n  arbitrary constants  c1 , c2 , .....cn      then by differentiating this   n  times , we shall get    equations . Now between these    n   equations  and the given equation in all   ( n+1 )   equations , if the   n   arbitrary constants   c1 , c2 , ...cn   be eliminated , we shall evidently get a differential equation for  n th    order , for there being    n   differentiations , the resulting equation must contain a derivative of the   n th order .



No comments:

Post a Comment

Our Latest Post

How to Evaluate an Integral

In this video you will see how to evaluate an Integral. This video shows an example, by this example you will see about how to evaluate an ...

Popular Post