Tuesday, 26 November 2013

Remainder Theorem

 

If a polynomials   f(x)   is divided by    (x-a)   i.e. a polynomial of degree  1   then the remainder is    f(a)   .

We know that
                     f(x) = g(x) q(x) + r(x)

where degree    r(x) <  degree   g(x)

choose     g(x) = (x-a)

there fore    f(x) =  (x-a)  q(x)  +  r(x)

where degree  r(x) <  degree g(x)  ,   i.e.  <1  ,  or   degree  r(x) =0   or   say   r(x) = r  .

therefore ,   f(x) = (x-a) q(x) + r

therefore ,   f(a) = (a-a) q(a) + r

or   f(a) = r =  remainder when the polynomial  f(x)   is divided by   x-a     .

therefore  ,     f(x) = (x-a) q(x) +f(a)

Here is an example of Reminder Theorem

Show that the polynomial remainder theorem holds for an arbitrary second degree polynomial f(x) = ax^2 + bx + c by using algebraic manipulation:

\begin{align}
\frac{f(x)}{{x - r}} &= \frac{{a{x^2} + bx + c}}{{x - r}} \\
 &= \frac{{ax(x - r) + (b + ar)x + c}}{{x - r}} \\
 &= ax + \frac{{(b + ar)(x - r) + c + r(b + ar)}}{{x - r}} \\
 &= ax + b + ar + \frac{{c + r(b + ar)}}{{x - r}} \\
 &= ax + b + ar + \frac{{a{r^2} + br + c}}{{x - r}}
\end{align}
Multiplying both sides by (x − r) gives
f(x) = ax^2 + bx + c = (ax + b + ar)(x - r) + {a{r^2} + br + c}.
Since R = ar^2 + br + c is our remainder, we have indeed shown that f(r) = R.


No comments:

Post a Comment

Our Latest Post

How to Evaluate an Integral

In this video you will see how to evaluate an Integral. This video shows an example, by this example you will see about how to evaluate an ...

Popular Post