Tangent line to a curve
At most points, the tangent touches the curve without crossing it (though it may, when continued, cross the curve at other places away from the point of tangent). A point where the tangent (at this point) crosses the curve is called an inflection point. Circles, parabolas, hyperbolas and ellipses do not have any inflection point, but more complicated curve do have, like the graph of a cubic function, which has exactly one inflection point.
Conversely, it may happen that the curve lies entirely on one side of a straight line passing through a point on it, and yet this straight line is not a tangent line. This is the case, for example, for a line passing through the vertex of a triangle and not intersecting the triangle—where the tangent line does not exist for the reasons explained above. In convex geometry, such lines are called supporting lines.
Analytical approach
The geometrical idea of the tangent line as the limit of secant lines serves as the motivation for analytical methods that are used to find tangent lines explicitly. The question of finding the tangent line to a graph, or the tangent line problem, was one of the central questions leading to the development of calculus in the 17th century. In the second book of his Geometry, RenĂ© Descartes^{} of the problem of constructing the tangent to a curve, "And I dare say that this is not only the most useful and most general problem in geometry that I know, but even that I have ever desired to know".^{}Intuitive description
Suppose that a curve is given as the graph of a function, y = f(x). To find the tangent line at the point p = (a, f(a)), consider another nearby point q = (a + h, f(a + h)) on the curve. The slope of the secant line passing through p and q is equal to the difference quotient-
Equations
When the curve is given by y = f(x) then the slope of the tangent is so by the point–slope formula the equation of the tangent line at (X, Y) is
When the curve is given by y = f(x), the tangent line's equation can also be found^{} by using polynomial division to divide by ; if the remainder is denoted by , then the equation of the tangent line is given by
For algebraic curves, computations may be simplified somewhat by converting to homogeneous coordinates. Specifically, let the homogeneous equation of the curve be g(x, y, z) = 0 where g is a homogeneous function of degree n. Then, if (X, Y, Z) lies on the curve, Euler's theorem implies
To apply this to algebraic curves, write f(x, y) as
If the curve is given parametrically by
Normal line to a curve
The line perpendicular to the tangent line to a curve at the point of tangency is called the normal line to the curve at that point. The slopes of perpendicular lines have product −1, so if the equation of the curve is y = f(x) then slope of the normal line is- To join Ajit Mishra's Online Classroom
- CLICK HERE
No comments:
Post a Comment