A function

*is said to tend to the limit*

**f(x)***as*

**l'****tends to**

*x**from the left*

**alfa**if

**given element is > 0**there exists a number

**delta>0**such that;

**/f(x)-l'/<of an element**whenever ;

**a-delta<x<a .****This number**

*l'*is called the left hand limit of*at*

**f(x)***and it is denoted by ;*

**x=a***or*

**lim x-->a f(x)=l'**

**lim x-->a-0 f(x)=l'**or ;

**lim h-->0 f(a-h)=l'**This limit is also written as

**f(a-0)**In simple words ,

*is said to tend to the limit*

**f(x)***from the left if*

**l'***tends to*

**f(x)***as*

**l'***approaches*

**x***through values of*

**a***smaller then*

**x***.*

**a**Working Rule for finding the limit from the left at

**x=a****A)**Put

*for*

**a-h***in*

**x***to get*

**f(x)**

**f(a-h)****B)**Make

*in*

**h-->0***.*

**f(a-h)**