A function

*is said to tend to the limit*

**f(x)***as*

**l***tends to*

**x***from the right*

**a**if given

*there exists a number*

**element is >0***, such that ;*

**delta>0**

**/f(x)-l/< of that element**whenever ,

**a<x<a+delta .**This number

*is called the right hand limit of*

**l***at*

**f(x)***and it is denoted by*

**x=a***or*

**lim x-->a f(x)=l**

**lim x-->a=0 f(x)=l**or ,

**lim h-->0 f(a+h)=l**This limit is also written as

**f(a+0)**In simple words ,

*is said tend to the limit*

**f(x)***from the right if*

**l***tends to*

**f(x)***as*

**l***approaches*

**x***through value of*

**a***greater then*

**x***.*

**a**working rule for finding the limit from the right at

**x=a.**a) -- Put

*for*

**a+h***in*

**x***to get*

**f(x)**

**f(a+h)**b) --

*in*

**h-->0**

**f(a+h).**