See this

Monday, 23 December 2013

Equations of First Order

 

In this post we will discuss about the equation of first order but not first degree .It is usually denoted
      
                dy/dx    by   p .

Thee are three types of such equations

1) Equations solvable for .
2)Equation solvable for    y  .
3)Equation solvable for    .

Equation Solvable for   p   :- 

examples like this    p.p +2py  cot x = y.y   and its solution is

[y-(c/1+cos x)][y-(c/1-cos x)] = 0

is the equation solvable for   p   .

Equation Solvable for    y   :-

Let in the given differential equation , on solving for   y   , given that ;

                    y=f(x,p)  ---------------(1)

Differentiating with respect to    , we obtain ;

              p=dy/dx=A(x,p,dp/dx)

so that we obtain a new differential equation with variables     and     .

Suppose that it is possible to solve the equation

Let the solution be
                            F(x,p,c)=0  ----------(2)
                          where     is the arbitrary constant .

The equation of  (1)  may be exhibited in either of the two forms . We may either eliminate   p   between  (1)  and  (2)  and obtain  A(x,y,c)   as the required solution or we may solve   (1)  and  (2)  for  x , y   and obtain .

                   x=f'(p,c)   and   y=f"(p,c)

as required solution where   p  is the parameter .

Equations Solvable for    x   :-

Let the given differential equation , on solving for  x   , gives

                                 x=f(p,y)  -----------------------(1)

differentiating with respect to   y  we obtain

                           1/p=dy/dx=A(y,p,dp/dx)  ; say

So that we obtain a new differential equation in variables    y      and   p   , Suppose that it is possible to solve the equation .

Let the solution be
                              F(p,y,c)=0   -------------------(2)

After the elimination    p   between    (1)   and   (2)     will give the solution .  Express   x  and    in terms    of    and   c   where    p   is to be regarded as parameter .